A DPG-based time-marching scheme for linear hyperbolic problems
نویسندگان
چکیده
The Discontinuous Petrov–Galerkin (DPG) method is a widely employed discretization for Partial Differential Equations (PDEs). In recent work, we applied the DPG with optimal test functions time integration of transient parabolic PDEs. We showed that resulting DPG-based time-marching scheme equivalent to exponential integrators trace variables. this extend aforementioned time-dependent hyperbolic For that, reduce second order system in first and calculate testing analytically. also relate our Gautschi-type. Finally, validate 1D/2D + linear wave equation after semidiscretization space standard Bubnov–Galerkin method. presented integrator provides expressions solution element interiors addition those on traces. This allows design different error estimators perform adaptivity.
منابع مشابه
a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولA New Time-space Accurate Scheme for Hyperbolic Problems I: Quasi-explicit Case
This paper presents a new discretization scheme for hyperbolic systems of conservation laws. It satisfies the TVD property and relies on the new high-resolution mechanism which is compatible with the genuinely multidimensional approach proposed recently. This work can be regarded as a first step towards extending the genuinely multidimensional approach to unsteady problems. Discontinuity captur...
متن کاملA numerical scheme for solving nonlinear backward parabolic problems
In this paper a nonlinear backward parabolic problem in one dimensional space is considered. Using a suitable iterative algorithm, the problem is converted to a linear backward parabolic problem. For the corresponding problem, the backward finite differences method with suitable grid size is applied. It is shown that if the coefficients satisfy some special conditions, th...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2021
ISSN: ['0045-7825', '1879-2138']
DOI: https://doi.org/10.1016/j.cma.2020.113539